Singular potential Hamiltonian system

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multibump Solutions for an Almost Periodically Forced Singular Hamiltonian System

This paper uses variational methods to establish the existence of so-called multi-bump homoclinic solutions for a family of singular Hamiltonian systems in R 2 which are subjected to almost periodic forcing in time.

متن کامل

Homoclinics for an Almost Periodically Forced Singular Hamiltonian System

where a and W satisfy (a1) a(t) is a continuous almost periodic function of t with a(t) ≥ a0 > 0 for all t ∈ R. (W1) There is a ξ ∈ R\{0} such that W ∈ C(R\{ξ},R). (W2) limx→ξW (x) = −∞. (W3) There is a neighborhood N of ξ and U ∈ C(N\{ξ},R) such that |U(x)| → ∞ as x→ ξ and |U ′(x)|2 ≤ −W (x) for x ∈ N\{ξ}, (W4) W (x) < W (0) = 0 if x 6= 0 and W ′′(0) is negative definite. (W5) There is a const...

متن کامل

Singular reduction of implicit Hamiltonian systems

This paper develops the reduction theory of implicit Hamiltonian systems admitting a symmetry group at a singular value of the momentum map. The results naturally extend those known for (explicit) Hamiltonian systems described by Poisson brackets. keywords: implicit Hamiltonian systems, Dirac structures, symmetry, reduction

متن کامل

Ultra-Relativistic Hamiltonian with Various Singular Potentials

It is shown from a simple scaling invariance that the ultra-relativistic Hamiltonian (μ=0) does not have bound states when the potential is Coulombic. This supplements the application of the relativistic virial theorem derived by Lucha and Schöberl [1,2] which shows that bound states do not exist for potentials more singular than the Coulomb potential. PACS numbers:03.65.Ge, 12.39.Ki, 12.39.Pn ...

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2013

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2013-545